If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2-20p=50
We move all terms to the left:
2p^2-20p-(50)=0
a = 2; b = -20; c = -50;
Δ = b2-4ac
Δ = -202-4·2·(-50)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20\sqrt{2}}{2*2}=\frac{20-20\sqrt{2}}{4} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20\sqrt{2}}{2*2}=\frac{20+20\sqrt{2}}{4} $
| 60/4= | | 29-x=2x-1 | | 10x+25=4x | | 32p^2+50=0 | | 2^x+9×2^x=40 | | 4x-30+6x-30+3x+x=360 | | 3x+3=37 | | X+7/3=1+3x-2/5 | | 2y+5y-7y=0 | | 3(2x-50)=735 | | 5x+3=3x–5 | | 5.5x-14.3=7.7 | | 3x-3=2x7x | | 3r-2=5r+7 | | 1.5t^2-36t=0 | | (X)=2x-3x+7 | | 3.14159(d/2)^(2)=0 | | A=3.14159(d/2)^(2) | | P+q=0 | | 2x-12÷3=-7 | | 9d/2-4/2=1 | | 3(9/6)-y=0 | | 3x-5+55+x+20=180 | | 4(2-3x)=-10-3x | | 8x+5x-57=36-6x | | 9d-4/2=1 | | x-80=150 | | 14x^2+64x+45=0 | | 3+2x=2-x+4 | | 13x-100=-60 | | 6=w/12 | | 8x-(6x-3)=9 |